

Using Forage Testing for Pasture Management

PATTY LASKOWSKI MORREN NIRS CONSORTIUM & ORGANIC VALLEY DAIRY PRODUCER GRASSWORKS GRAZING CONFERENCE JANUARY 31, 2019

Types of plant sampling & goals:

- Ecological Sampling
 - Looks at mapping, species, cover
 - Is done for habitat description/distribution, habitat preservation, rare/endangered species, invasive species, etc.
- ► Tissue Testing
 - ► Determines if:
 - Sufficient nutrients are available in the soil
 - Nutrients have been taken up by plants
 - ▶ Plants are healthy
 - Often looks at element levels
 - Great to combine this with soil analysis and forage analysis

Types of plant sampling & goals:

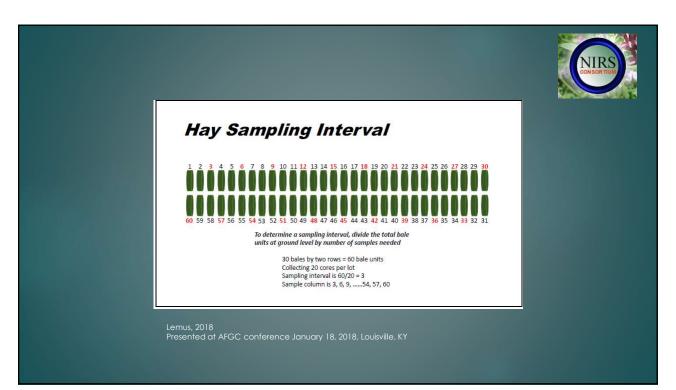
- ► Forage Availability
 - Estimates forage dry matter available to cattle
 - Helps you adjust your grazing allotment
 - Measured by eyeball, pasture/grazing stick, plate meters, trac sonar, LiDAR
- Forage Analysis
 - Determines nutrients available to animals
 - ► Our focus today

Is this what pastures look like?

Why do we sample pasture?

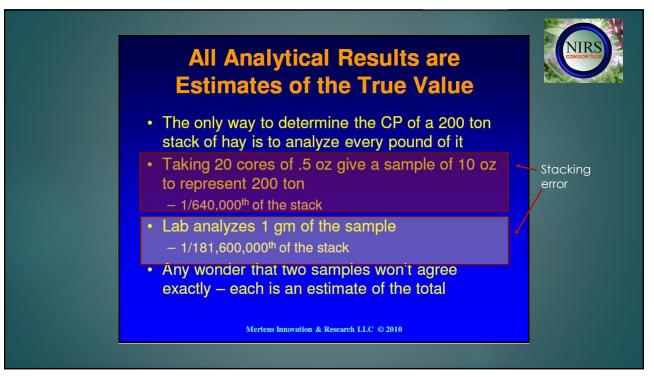
Early season Mid season This is what pastures and grazing look like.

5

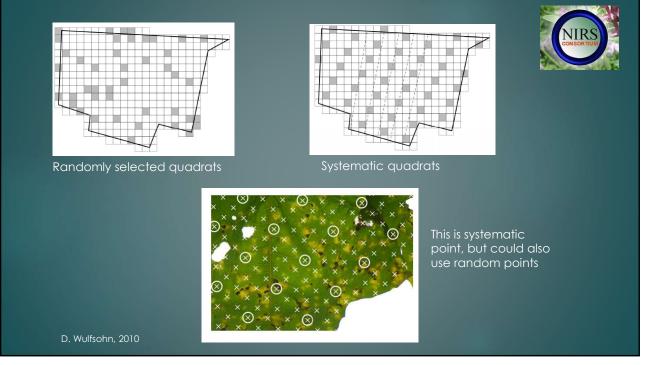

ANALYSIS #1 Corn Silage	SAMPLE #	ANALYSIS #2 Orchardgrass Hay	SAMPLE #
Total DM	51.20%	Total DM	84.40%
CP	8.70%	CP	9.10%
ADF RFQ:	22.54%	ADF RFQ:	43.39%
NDF 187.00	39.13%	NDF 68.85	75.32%
NDFD48h	67.42%	NDFD48h	45.96%
ESC	2.51%	ESC	4.13%
WSC	4.70%	WSC	4.95%
TDN	75.00%	TDN	53.15%
*All Nutritive Values at 100% DM predicted by 2018 NIRSC Ma	odels. NDFD48h is represented as % NDF.	*All Nutritive Values at 100% DM predicted by 2018 NIRSC Mod	els. NDFD48h is represented as % NDF.
ANALYSIS #3 Legume Balage	SAMPLE #	ANALYSIS #4 Grass Balage	SAMPLE #
Total DM	63.70%	Total DM	55.80%
CP	20,41%	CP	14.88%
ADF RFQ:	43.00%	ADF RFQ:	33.82%
NDF 100.57	51.96%	NDF 109.29	56.40%
NDFD48h	43.19%	NDFD48h	58.26%
ESC	3.81%	ESC	3.16%
WSC	3.97%	WSC	4.11%
TDN	53.56%	TDN	63.18%
*All Nutritive Values at 100% DM predicted by 2018 NIRSC Ma		*All Nutritive Values at 100% DM predicted by 2018 NIRSC Mod	
ANALYSIS #5 Sudan Balage	SAMPLE #	ANALYSIS #6 Fescue & Orchardgrass Ha	ay SAMPLE #
Total DM	48.20%	Total DM	89.30%
CP	9.74%	CP	12,94%
ADF RFQ:	34.94%	ADF RFQ:	34.67%
NDF 100.17	60.39%	NDF 96.23	63.15%
NDFD48h	62.63%	NDFD48h	57.02%
ESC	5.74%	ESC	9.89%
WSC	7.22%	WSC	10.30%
TDN	62.01%	TDN	62,29%

Just as stored forages vary in analysis, pastures vary also.

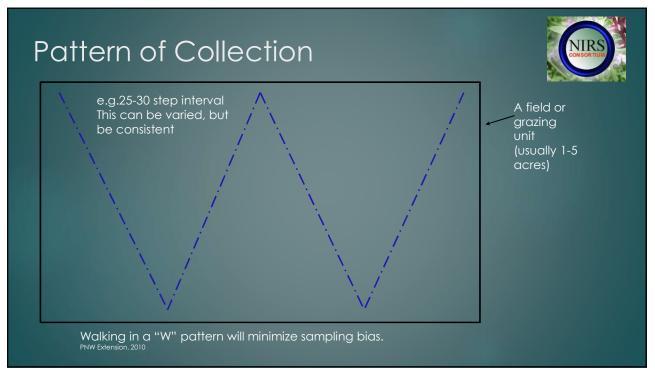
The same rules for sampling stored feed apply to pasture sampling


- 5. Combine & mix cores or grabs into one sample
- 6. Label samples with as much information as possible
 - Farm name and address
 - ► Harvest date
 - ▶ Field number/location
 - ▶ Species, species mix, variety, type
 - ► Growing conditions
- 7. Seal bag, refrigerate or freeze, or dry (freezing best)
- 8. Send to lab

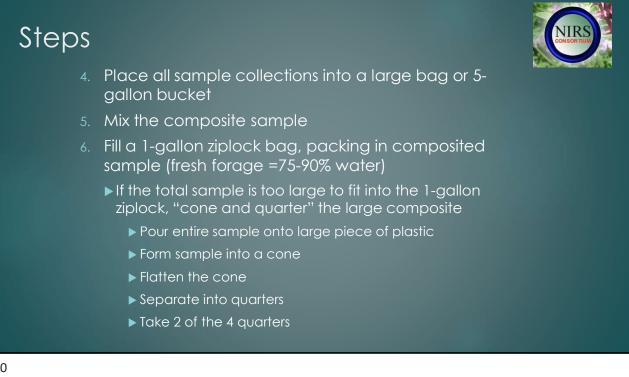
11

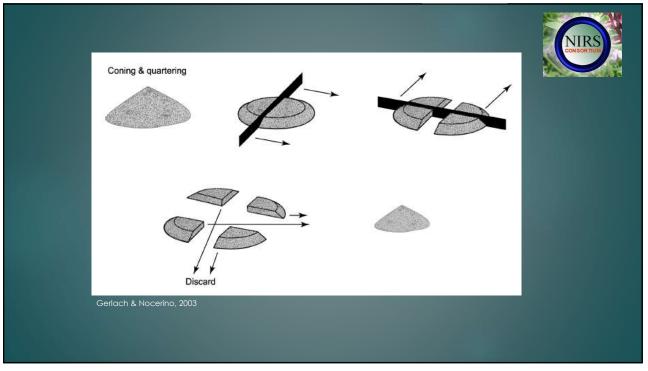

Sample Handling Errors

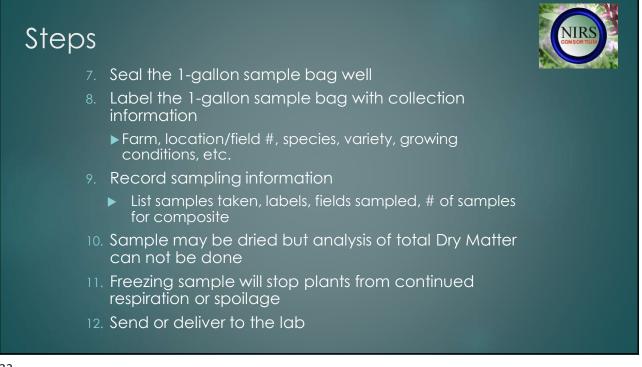
- Understand sources of variation before you get started
 - The plant, the way it grows (leaf, stem, etc.)
 - Plant genetics, variety, hybrid
 - Growing conditions
- Some feeds are more heterogeneous than others
 - > Think ground corn vs. alfalfa balage
- Some constituents are more variable than others
 - NDFD vs. CP



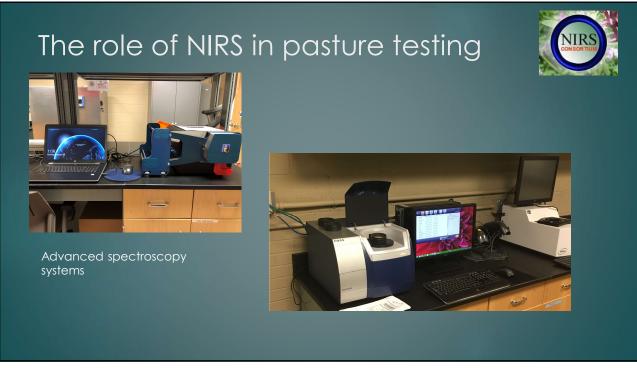
How do we collect pasture samples?


- We want to combine good non-biased technique with a little judgement (art)
 - Instead of laying out maps and randomly selected sampling areas/points, we can use a simplified method that minimizes bias and represents the sample area well




Steps

- 1. Determine the sampling area
- 2. Number of samples for the area should be 20-50
- 3. Stop every Xth feet to take a sample
 - ▶ Quadrat
 - Clip everything in the quadrat, but avoid manure, urine or refused weeds
 - Clip to height cattle would graze
 - ▶ Point
 - Grasp a handful of forage and break off
 - Break off at height cattle would graze
 - > Avoid manure, urine or refused weeds



Developing a baseline of pasture quality When do we want to routinely collect pasture samples? Sample each pasture unit at beginning, middle, and end of season Sample units with stockpiled forage over time to see how quality is retained over time Take photos with sampling to enhance eyeball skill Take samples for 3 years minimum for the baseline Record sample and field data well

Coordinating pasture quality

- Compare season to season
- Compare varieties and species
- Look at growth rates of different fields
- Help in making harvesting decisions
- Compare mixes
- Extending the grazing season
- Use pasture data to balance ration with some supplemental feed and minerals
- Sample pastures under unusual growing conditions
 - Flooding anyone? Fungus?
 - Drought

<section-header> How are forages tested? Wet Chemical Techniques A specific method is used to determine a particular constituent Crude Protein, Fat, Lignin, ADF, NDF, NDFD48 etc. Methods are overseen by groups such as AOAC, AAFCO, and NFTA NIRS Is a secondary method used to predict a nutrient value Is not an estimate

NIRS for rapid analysis

- Concern with pasture testing: "I will not get my results in time before I feed my pasture, or it will not represent the sample that I took."
 - NIRS offers rapid analysis, so the analysis will be very close to what you are feeding
 - You are building a database of information so that you can make better decisions on your farm
 - ▶ If you know your stored feed, you can adjust your pasture

l	Jsing	Multip	ole Sa	implin	g
Single	Mean (2)	Mean (5)	Single	Mean (2)	Mean (
41.2			38.2		
39.7	40.5		38.9	38.5	
38.3		40.5	38.1		38.9
42.0	40.1		41.2	39.7	
41.5			38.1		
40.1	40.8		39.6	38.9	
41.3			41.8		
40.3	40.8	40.2	40.5	41.2	40.4
38.5			38.5		
40.7	39.6		41.3	39.9	
	Grand Mea	n	40.0	40.0	40.0
SD	or SE of Mea	an (n)	1.34	1.19	0.77
Estimate	d SE based	on ±sd/√n		0.95	0.84

Forage Analysis	
For a complete listing of forage analysis please see our website <u>uwlab.soils.wisc.edu/forage</u> Energy estimates and forage quality indexes included	
Hay/ Haylage	
• UW Recommended: Standard NIR with wet chemistry NDFD, NDF, Ash	\$32
Standard NIR: DM, CP, ADF, ADF-CP, NDF-CP, NDF, lignin, NDFD, Fat, P, Ca, K, Mg, Ash	\$16
Corn Silage	
UW Recommended: Standard NIR with wet chemistry; NDFD, NDF, Ash	\$33
Standard NIR: DM, CP, ADF, ADF-CP, NDF-CP, NDF, lignin, NDFD, Fat, with P, Ca, K, Mg, Ash and starch	\$17
 UW Recommended + wet chemistry starch & starch digestibility (DSA) 	\$55
TMR	
Wet chemistry DM, CP, Ash, NDFD, NDF, Ca, P, Mg, K, Fat	\$46
 TMR wet chemistry + starch & starch digestibility (DSA) 	\$68
Grain/Feed/Byproducts	
• UW Corn Grain Evaluation - wet chemistry DM, prolamin protein, mean particle size with NIRS starch,	
CP, NDF, Fat, Ash	\$33
 Grain Mixes/Byproducts: wet chemistry DM, CP, Ash, NDF, Ca, P, Mg, K, Fat 	\$26
 Soybeans (% Bypass): NIR (DM, CP, %Bypass) 	\$12
Scissor Cuts by NIR (whole plant fresh forage only)	
CP, ADF, NDF (predicted TDN, RFV, NEL)	\$10
MILK 2006 by NIR (Fermented Highly Recommended)	
 Legume: DM, CP, ADF, NDF, NDFD, Ash, Fat, Milk/ton 	\$16
 Corn Silage: DM, CP, ADF, NDF, NDFD, Ash, Fat, Starch, milk/ton 	\$16
Corn Silage: NIR + Starch Digestibility (DSA)	\$38

Importance of good NIRS techniques

S S

NIRS can be more repeatable than wet chemistry

Nutrient (% DM)	Average	SD*, wet chemistry	SD*, NIRS
CP	15.8	0.33	0.05
ADF	31.4	0.78	0.32
NDF	41.9	0.70	0.28
Ash	11.3	0.20	0.07
Fat	3.44	0.12	0.02

Ondarza and Ward Feb 25 2013 Hoard's Dainym

Good calibrations are important

Legume Hay					
Constituent	N	Mean	SEC	RSQ	SECV
DM	515	94.32	0.35	0.94	0.38
СР	799	20.37	0.74	0.94	0.79
ADF	876	32.48	1.54	0.93	1.63
aNDF	1176	41.56	1.87	0.95	1.97
ASH	529	8.43	0.80	0.93	0.87
FAT	188	1.99	0.19	0.94	0.22
Lignin	107	7.08	0.63	0.82	0.73
dNDF30	107	17.87	2.88	0.70	3.22
IVTDMD30	107	68.00	3.28	0.89	4.37
dNDF48	388	20.99	2.02	0.90	2.26
IVTDMD48	387	76.89	2.56	0.86	2.75
Ca	539	1.42	0.17	0.77	0.19
Р	538	0.27	0.04	0.62	0.04
к	493	2.41	0.25	0.85	0.27
Mg	451	0.32	0.05	0.77	0.05

Hay_&Forage

Big-profit practices? And the survey says . . .

Jan 15, 2019, By Mike Rankin

Scale:

- 2 = Improvement in net farm income of over 10 percent 1 = Slight positive impact on net farm income 0 = Neutral return -1 = Slight negative impact on net farm income -2 = Reduction in net farm income of over 10 percent

The top 10 practices that all combined respondents (producer, public, and private sectors) ranked as having the most positive net return and their average scores were:

We'd like to move #9 up by

soil testing!

- 1. Soil testing -1.58
- 2. Extending the grazing season / feeding less hay -1.57
- 3. Correcting soil pH 1.42
- 4. Rotational stocking (1 to 2 moves per week) 1.37
- 5. Better establishment techniques and tools 1.30
- 6. Aligning parturition with forage quantity/quality 1.26
- 7. Better hay storage methods (barn, baleage, tarp) 1.26
- 8. Stockpiling forage for later grazing 1.25
- 9. Testing hay/baleage for forage quality 1.20
- 10. Adding improved clovers 1.18

Where is the money in milk production?

- Components, Components, Components, and Fat is worth more than Protein
- Specialty: e.g. grassmilk, on-farm products?
- How can forage testing help with making good feeding decisions?
- Pasture is not limitless, even in the grazing season.
 - Coordinating with stored feed can help the bottom line.
 - Adjusting harvest of pasture can improve \$ efficiency

	vilk Yield	Protein Percent	Fat Percent	
Energy Intake				
Increased dry matter intake	++	+	+	
More concentrate, Less forage (fiber)	÷	+	-	
More fermentable carbohydrates	÷	+	-	
Grain processing	·	+	-\$	
Fat Supplementation				
Fish oil +	÷	+	-	
Vegetable oil	+	-	-	
Hydrogenated fat	•	0	+	
Cow Status				However:
Increased frequency of concentrate feeding	÷	+	+	We know that breed ha a great impact on
Over conditioned dry cows		-	+	butterfat production.
Negative energy balance (thin cows)		-	-	
Forage Supplementation				
Partial TMR +	+	+	+	
Corn silage	⊧ŝ	+ŝ	0	
Hay)	0	+5	
Other	-			
Feeding buffers	÷	0	+	
Pre-fresh dry cow program	+	+	+	
More rumen undegradable protein	+	+	0	

	d milk component yield of Js 19.1 lb concentrate.a	Holstein cows fed
°Study at Penn State Dairy Sci. 85:1777-179 ¤Total protein.	with high genetic Holsteins 2).	(Bargo et al., 2002a. J.
Item	Pasture with no concentrate	Pasture plus 19.1 lb concentrate
Milk yield, lb/day	45.5	65.6
Milk fat		
%	3.81	3.31
lb/day	1.74	2.13
Milk true protein		
%	2.95 (3.15) ^b	3.10 (3.30) ^b
lb/day	1.32	1.98

Increasing sugar in
the diet can
increase butterfat
yield.

TABLE 1: Changes in milk yield and composition with changes in sucrose and starch supplementation

Sucrose %	Startch %	DM Intake, Ib	Milk, Ib	Milk fat, Ib	Milk protein, lb	FCM, lb
0	7.5	54.0	85.8	3.24	2.73	89.3
2.5	5.0	56.4	89.1	3.37	2.82	93.0
5.0	2.5	57.3	88.2	3.64	2.84	96.8
7.5	0	57.3	86.9	3.57	2.82	95.2

FCM= fat-corrected milk (Broderick et al., 2000)

		22	A DA
Table 1. Conce	entrations (% of DM) of co	arbohydrates
in feeds.1			
Feed	NDF	Starch	Sugar
Alfalfa			
(fresh,	32.0	1.0	8.5
pasture)			
Alfalfa hay	40.0	2.0	6.0
Alfalfa silage	38.0	1.0	2.0
- Bakery	23.0	18.0	11.0
waste	20.0	10.0	11.0
Citrus pulp	24.0	1.0	26.5
Corn grain	13.0	70.0	0.0
Corn silage	45.0	30.0	1.0
Molasses,	0.0	0.0	55.0
cane	0.0	0.0	55.0
Sugar beet	45.0	2.0	14.0
pulp	43.0	2.0	14.0
Whey	0.0	0.0	75.0
Eastridge, 2014 available c	it:		

35

Other factors that may affect milk components

Cation/Anion balance:

- Minerals in alfalfa. Increasing the dietary cation-anion difference [DCAD calculated as: (dietary sodium + potassium) – (dietary chloride + sulfur), where minerals are expressed as milliequivalents per kilogram of diet] linearly increases milk fat concentration and yield. On average, the DCAD concentration in alfalfa is about 3 times greater than that of corn silage.
- pH of rumen: sodium bicarbonate, potassium bicarbonate; increases in DCAD often increase milk fat yield